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LATERAL VIBRATION CHARACTERISTICS OF A 1/40-SCALE DYNAMIC MODEL 

OF APOLLO-SATURN V LAUNCH VEHICLE 

By Earl C. Steeves and John J. Catherines 
Langley Research Center 

SUMMARY 

Analytical and experimental investigations of the lateral vibration characterist ics 
of a dynamically similar 1/40-scale model of the Apollo-Saturn V launch vehicle have 
been performed. A brief description of the model is given and the procedures used in 
the tests and reduction of the data are discussed. The idealization of the model and 
method of analysis are presented. The free-free natural frequencies and corre
sponding mode shapes are presented for  weights corresponding to several  flight t imes 
including staged configurations. In addition, cantilever results and experimental modal 
damping values are presented. 

In general, good agreement was found between analytical and experimental results; 
thus the idealization is validated and the beam idealization adequately represents the 
motion of the model over the frequency range of the investigation. On comparing the fre
quency of the 1/40-scale model with those of a l/lO-scale replica model, good agreement 
is found for the f i r s t  three modes. This comparison indicates that the degree of relaxa
tion of replica scaling used in the design of the 1/40-scale model is acceptable for  deter
mining the first three launch-vehicle bending modes. The importance of proper repre
sentation of the tie-down condition and the importance of the inclusion of shear deformation 
a r e  demonstrated. 

INTRODUCTION 

An important consideration in the design of launch vehicles is the dynamic response 
of these structures to input loads. The computation of these responses is facilitated by a 
knowledge of the normal modes of vibration. Thus, it is important to be able to  obtain 
these modal data with confidence early in the launch-vehicle-development cycle. A con
venient tool for  this purpose is the structural model which may be used either to  study 
full-scale response or to confirm the accuracy of calculated modal information. The use 
of structural models as opposed to full-scale test structures is attractive because of the 
great cost reduction in their construction and the reduced effort and manpower required 
to obtain experimental data. One modeling technique, referred to as replica modeling in 



this report, in which the main load-carrying members are geometrically scaled repro
ductions of the full-scale members has been investigated with a 1/5-scale replica model 
of the Saturn I launch vehicle and with a l/ l0-scale replica model of the Apollo-Saturn V 
launch vehicle. (See refs. 1and 2, respectively.) Results presented in reference 3 indi
cate that the reliability of predicting full-scale vibration characteristics with replica 
models is good. 

An important step in the development of a structural  model is the selection of a 
convenient scale factor. On one hand, it is desirable that the model be small because of 
the ease and economy with which experimental data can be obtained with a small model; 
on the other hand, practical considerations such as maintaining tolerance requirements 
and the manufacture of thin-gage materials impose limitations on the amount of size 
reduction possible in a replica model. 

The concept of a dynamically similar model may be used to achieve further size 
reduction than that which is possible with a replica model. The full-scale stiffness and 
mass distributions a r e  scaled but l e s s  detail is achieved in the model than exists in either 
the full-scale launch vehicle or  i ts  replica model. Thus, a departure from replica repro
duction is introduced with the assumption that this departure does not affect the overall 
response characteristics as compared with scaled full-scale characteristics. Therefore, 
a 1/40-scale dynamically similar model of the Apollo-Saturn V launch vehicle has been 
constructed as a par t  of a launch-vehicle model program a t  the Langley Research Center. 
The vibration characteristics of this model have been investigated in order to obtain infor
mation concerning the degree of relaxation from replica scaling which can be employed 
successfully to predict overall vibration characteristics. 

The purpose of this report, therefore, is to present the lateral  vibration character
ist ics of the 1/40-scale dynamically similar model of the Apollo-Saturn V launch vehicle 
as determined by analysis and experiment. A preliminary indication of the validity of 
using small dynamically similar models is given by a comparison of data presented here 
with preliminary data from the l/lO-scale replica model of the Apollo-Saturn V launch 
vehicle. 

SYMBOLS 

A cross-sectional a rea  of beam element 

C1,C2,C3,C4 influence coefficients defined by equations (4) to (7) 

E Young' s modulus of elasticity 

F shaker force 
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Yn 

frequency 

shear modulus of elasticity 

damping factor 

total deflection 

moment of inertia of cross  section 

Timoshenko shear constant 

length of beam element 

bending moment 

mass 

number of cycles 

transfer matrix for a mass element 

mean radius of vehicle shell wall 

percent difference, fa-fe X 100 
fe 

transfer matrix for beam element 

transfer matrix relating state vector a t  initial end to that a t  final end 

transfer matrix after application of boundary conditions 

transverse shear 

coordinate along length of beam element 

initial vibration amplitude 

vibration amplitude after n cycles 
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Z state vector 

-
Z state vector after application of boundary condition 

50 slope of bending curve 

U Poisson's ratio 

w natural circular frequency 

Subscripts: 

a analytical 

e experimental 

i ith mass or beam element 

L left 

R right 

0 initial 

n number of cycles 

t tip 

MODEL DESCRIPTION 

The 1/40-scale model is dynamically similar to the Apollo-Saturn V launch vehicle 
and consists of simulated S-IC, S-11, and S-IVB stages, Apollo payload, and launch escape 
system. The complete model is shown in figure 1, supported by a 2-cable suspension 
system designed to provide the proper simulation for free-free lateral  vibration response 
studies. A sketch showing some of the model details, station numbers, and definition of 
the model components is presented in figure 2(a). A detailed description of the model is 
given in reference 4. 

The model is 279.4 cm long with a maximum tank diameter of 25.17 cm. When 
fully ballasted with propellant simulation weights, the model mass is 148.03 kg. This 
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mass corresponds to a full-scale weight condition in which the first stage is 85 percent 
full and all upper stages are 100 percent full. As indicated in reference 4, space limita
tions preclude modeling of the lift-off condition with this model. 

The skin-stringer cylindrical sections were designed on the basis of scaled AE 
distributions with the skin thickness and stringer dimensions chosen so that an equivalent 
E1 was attained. The number of stringers used on the model was reduced to 40 from the 
168 and 204 used on the full-scale oxidizer and fuel tanks, respectively. The bulkhead 
thicknesses were also determined on the basis of a scaled AE distribution. The scaling 
of the AE distributions account for differences in material  between model and full-scale 
vehicle as discussed in reference 4. The bending stiffness of the model, which was 
obtained by direct scaling from the full-scale stiffness, is presented in figure 3. The 
shear stiffness shown in figure 4 was computed f rom the bending stiffness by use  of the 
relation 

KAG = KEI 
r2(1 + v) 

with the shear coefficient K taken as 1/2 and Poisson's ratio v taken as 1/4. The 
model mass  distribution is given in figure 5. 

In the S-If and S-IVB stages, the propellant weight is simulated by cylindrical 
ballast weights attached to the model skin. This system of ballast weights was used in 
the upper stages because in all configurations considered, these stages a r e  either 100 per
cent full or empty. When empty, no propellant mass  is considered and when 100 percent 
full i t  is assumed that there is no sloshing and thus the propellant can be treated as a 
rigidly attached mass. In the S-IC stage there are ,  in addition to the ballast weights, two 
propellant slosh simulators attached to the model skin. These simulators are spring-
mass devices based on a mathematical slosh analogy given in reference 5 and the full-
scale slosh frequencies with the tanks 85 percent full. These simulators have a mass of 
9.05 kg and a spring stiffness of 542.4 N/cm for an uncoupled frequency of 12.3 Hz. The 
position of attachment of the simulators for different propellant levels is shown in 
figure 2(b). 

Sketches of the simulated F-1 and 5-2 engines, with the associated mass and stiff
ness, are given in figure 6. The section of the engine shown crosshatched in figure 6 
gives the proper stiffness and the remainder of the engine is designed to give proper 
inertial properties. There are five F-1 engines located on the S-IC stage, four located 
symmetrically a t  the outside, and one at the center supported by a c ross  beam of an  I-
configuration. Five J-2 engines are located on the S-II stage, supported by a truncated 
cone whose small  end contains a cross  beam. The simulated engines are mounted on the 
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base of this cone in the same arrangement as the engines on the S-IC stage. The S-IVB 
stage has a single 5-2 engine, also mounted on a thrust cone. 

The simulation of the lunar module was  achieved with a rigid mass attached to the 
lunar module adaptor. The dimensions of this mass  are such as to give the proper weight, 
center of gravity, and moment of inertia. 

TEST PROGRAM 

Three test  configurations, configuration I denoting the complete vehicle, configura
tion 11denoting the S-11and S-IVB stages with the Apollo payload, and configuration III 
denoting the S -NB stage with the Apollo payload, were investigated with simulated free-
f ree  boundary conditions. Only configuration I was investigated with a simulated canti
levered boundary condition. Each configuration was studied with various weight conditions 
corresponding to different flight times. A summary of the tes t  configurations investigated, 
both experimentally and analytically, is given in table I. 

Suspension and Shaker System 

Free-free boundary conditions for  the model were simulated with the use of a two-
cable suspension system supporting the model as shown in figure 1. The holddown posts 
of the model were attached to a cruciform cradle from which the model was supported 
by two vertical cables. Tipover stability of the model was provided by a restraining 
cable located at the top of the S-NB stage as illustrated in figure 1. The restraining 
force was varied by varying the distance between the cables at the top supports. The 
characteristics of this suspension system a r e  discussed in detail in reference 6. One 
electromagnetic shaker having a capacity of 45 N was used for all the tes ts  performed. 
The shaker was supported by cables and was oriented to apply the force a t  the cradle 
(station 5.08 cm) normal to the plane of the vertical suspension cables. 

The 1/40-scale Saturn V model was mounted on a test  stand, as shown in figure 7, 
to simulate a cantilever test  condition. The test stand used was an aluminum cylinder 
14 cm high with a 24.4-cm outside diameter and a 2.04-cm wall thickness. The model 
was bolted to the test  stand through i ts  tiedown posts. The shaker was attached to the 
S-I1 thrust structure (model station 106.5 cm) and was supported by two cables, a support 
setup similar to the setup used during the free-free tests. 

Instrumentation 

Vibration response, frequency, and damping of the model were determined from the 
output of lightweight crystal-type accelerometers. An effort to measure the center-line 
motion of the model (beam-type motion) was made by measuring the response at the 
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various flanged joints of the model where possible local response effects were minimized. 
Accelerometer locations are shown in figure 2(a). 

The data were recorded on analog tape and were digitized by means of a 24-point
per-cycle conversion. The digitized data were then reduced by means of a harmonic 
analysis to determine the model deformations from which the fundamental component of 
the response was converted to normalized mode shapes. 

Laboratory Procedure 

A frequency sweep with constant shaker force input was performed over the fre
quency range of 10 Hz to 300 Hz for each test condition of the model. The principal 
bending modes were detected by monitoring the acceleration level measured at the tip 
of the model. Each resonance was then tuned to its maximum response where the reso
nant frequency, mode shape, and damping of the elastic bending modes were determined. 
The damping w a s  obtained by cutting the input signal to the shaker at the resonant f re
quency and recording the output of accelerometers on oscillographs. The amplitudes 
were read from oscillographs and plotted on semilogarithmic paper with a straight line 
faired through the points. The damping factor g w a s  obtained from the relation: 

where 

initial vibration amplitudeYO 

Yn vibration amplitude after n cycles 

ANALYSIS 

In this section the idealization of the model used in the analysis and the method of 
analysis and solution a r e  discussed. As discussed previously, configuration I is used to 
denote the complete vehicle, whereas configuration I1 denotes the S-11 and the S-IVB stages 
with the Apollo payload. The presence of the launch escape system is indicated in the 
specification of the particular condition under consideration. The S-IVB stage with the 
Apollo payload is referred to as configuration III. A summary of the configurations and 
weight conditions analyzed is given in table I. 

Physical Idealization 

For the purpose of analysis, the model was treated as a beam (fig. 2(b)) and the 
engines on the S-IC,S-11, and S-IVB stages, and the slosh mass simulators were treated 
as branch beams. A lumped-mass finite elastic element idealization was used. The 
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effect of shear deformation was included but that of rotary inertia was neglected. In the 
idealization of configuration I, 55 massless beams connecting 56 masses were used to 
represent the main beam. This arrangement, in general, resulted in beam elements 
5.08 cm long with exceptions occurring at the branch locations. For  the staged config
urations, a beam element length of 2.54 cm was used, the total number of elements 
depending on the configuration. The minimum number of elements used was 36 for  
configuration III. 

The engine branches were idealized as multi-degree-of-freedom beams as shown in 
figure 6. On both the S-IC and S-11stages there is a cluster of five engines. Each engine 
in a cluster w'as idealized as shown in figure 6 and these representations were then com
bined into a single branch having equal impedance. On all three stages the engine thrust 
structure was considered to be rigid. 

The fuel-slosh simulators were idealized as single-degree-of -freedom branches. 
The location of these branches on the main beam was varied,to correspond to different 
first-stage propellant levels. These locations are given in figure 2(b). 

The structure that simulates the lunar module, although attached to the main struc
ture as a branch, was treated as a rigidly attached mass as were the nonsloshing
propellant-simulation ballast weights. The tiedown structure of the model used in the 
cantilever configuration (see fig. 7) was idealized as translational and rotational springs 
connecting the vehicle to the ground as indicated in figure 8. 

Method of Analysis and Solution 

The analysis was performed by use of the state-vector transfer-matrix technique. 
(See ref. 7.) This method is based on relating the state vector on one side of an element, 
whether it is a mass  or  elastic element, to the state vector on the other side. For a beam 
element, the state vector Z consists of shear,  moment, rotation, and deflection. With 
the sign convention shown in sketch (a), the transfer relation for a mass element without 
rotary inertia is 

1 0 0 


0 1 0 

0 0 1c Li 
0 0 0 

r 

2 V 

M 

0 cpwoml
1 h 
- d  
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where Li denotes the left side of the ith mass; Fti, the right side; and mi, the ith 
mass. For an elastic beam element with sign convention shown in sketch (a), the transfer 
relationship is 

xi+l I 15” xi 

Sketch (a) 

-
1 0 0 0 

2 1 0 0 

(3) 
C1 c 2  1 0 

c 4  2 	 1-

where 2 is the length of the beam connecting the ith and i + l th  mass. The influ
ence coefficients C1, C2, C3, and C4 for  this element a r e  given by 

c1 = s””’ &) dx (4) 
xi 
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and can be derived by using the theorems of the slope deviation method; however, they dif
fer from those given in reference 7 in that these constants have the advantage of not 
requiring that the stiffness be constant over the length of the beam element used. The use 
of these constants removes the necessity of assuming average values of bending and shear 
stiffness over the length of an element for cases  with complicated stiffness distributions. 
The influence coefficients for this analysis were computed from the bending and shear 
stiffness distributions in  figures 3 and 4, respectively, by use of a standard numerical 
integration routine. 

In addition to the transfer matrices for elastic beam and mass elements, a transfer 
matrix for crossing the juncture of a branch with the main beam is required. To obtain 
this relation, the joint shown in sketch (b) is considered. 

Branch 

r Juncture 
M5ri":9Rigid 

Vl 

*4
(F 

M1 ' \  
Main beam .-/ Main beam 

Sketch (b) 

Continuity requires that 
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and equilibrium requires that 

v 5  4-v 4  = v3 

M5 + M4 = M3 

v1=v 3  

A relation between z1 and 22 is desired; thus, for equilibrium 

and for  continuity 

The following transfer relation is constructed for the branch: 
r .  

v6 

M6 

q 6  

h6 -

I 




Since open-ended branches a r e  being considered, V7 = 0 and M7 = 0. Therefore, 

but by continuity 

Therefore, 

I 

'p1::h l  

which is the relation needed for crossing the branch juncture on the main beam and is 
used in the same manner as the transfer matrices for the beam and mass element. 

To determine the natural modes and frequencies, the transfer matrix for each of the 
elements, masses, and elastic beams a re  calculated to obtain relations (2) and (3) .  Then, 
by starting at the initial end of the beam, the f i rs t  mass which is numbered zero can be 
written: 

where Po is the transfer matrix for the mass as in equation (2). For the beam attached 
to this mass, 

where Fo is the transfer matrix for the beam as in equation (3).  But continuity and 
equilibrium require that 
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ZL,O = z o  

thus, 

A continuation of this process of applying continuity and equilibrium at joining members 
and using transfer matrices across  members results in 

When a branch juncture is encountered, a transfer matrix as in  equation (15) is generated 
and used in equation (20) in the same manner as the transfer matrices for mass  and beam 
elements. The state vector a t  the initial end of the beam is related to that at the final 
end by 

Y 

ZL,f = TZR,o 

The matrix T in equation (21) is a function of frequency. By applying two homogeneous 
boundary conditions to each end of the beam, equation (21) becomes 

where is a matrix of order 2 and Z R , ~consists of the unspecified elements of the 
state vector a t  the initial end of the beam. If zR,ois to exist, then 

Det = 0 (23) 

which is the frequency equation. On the digital computer, this equation is solved by deter
minant plotting in the following manner: the matrix equation (21) and determinant T 
a r e  computed for incremental values of frequency and any changes in the sign of deter
minant ;I; indicates a zero crossing. At each zero crossing, an increasingly smaller 
increment of frequency is used to compute determinant ;I; until i t  is within a specified 
tolerance. This procedure gives the natural frequency and thus in equation (22) one of 
the elements is chosen and the others a r e  found relative to it. With Z R , ~known, Z R , ~  
is known, and Z i  can be calculated for  all stations by using equation (20) to provide the 
modal displacements, slopes, moments, and shears. 

To provide for the connection of a mass to the ground by a translational and/or 
rotational spring, the transfer matrix (2) is replaced by tQe following matrix: 
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n T 

1 0 0 MUz - Kh 

0 1 KSQ 0 

0 0 1 0 

0 0 0 1 
J 

where Kh is the translational spring and Kq is the rotational spring. 

RESULTS AND DISCUSSION 

The natural modes and frequencies of the 1/40-scale dynamic model of the Apollo-
Saturn V launch vehicle as determined from analysis and experiment are presented in 
tables 11to IV and in figures 9 to 20. The modes presented a r e  those corresponding to 
overall response of the model. A summary of the natural frequencies and modal damping 
for  configuration I with free-free boundary conditions is given in table 11. 

The mode shapes for configuration I with free-free boundary condition are shown in 
figures 9 to 12. With the S-IC stage empty and the upper stages 100 percent ful l ,  the f i rs t  
three modes show predominant model bending motion whereas the fourth and fifth modes 
show predominant engine motion. For the remaining three weight conditions of configura
tion I, with free-free boundary conditions, the first mode found in the analysis is a mode 
in which the motion of the slosh mass simulator predominates and the model undergoes 
rigid body motion. Experimentally, this slosh mass simulator mode w a s  found to have 
measurable response a t  station 264 only for the 15-percent weight condition. Therefore, 
a mode shape is presented only for this weight condition. The experimental frequencies 
given in figures ll(a)and 12(a) for the slosh mass  simulator mode for the 50-percent and 
85-percent weight condition were obtained by monitoring the response of the slosh mass 
simulator. Examination of figures lO(a), ll(a), and 12(a) indicates that the ratio of the 
response at station 264 to the responses of the lower slosh mass  predicted by the analysis 
decreases with increasing fuel level; thus, both analysis and experiment show that the 
motion of the model in the slosh mode decreases with increasing fuel level. In the 
remaining modes for the 15-percent, 50-percent, and 85-percent weight conditions, bend
ing motion of the model predominates. The modal damping for  all fuel levels is found to 
be small but there is a general trend of increased damping for higher mode number. 

Examination of the experimental free-free mode shapes for the 15-percentY50
percent, and 85-percent weight conditions shows that there is very little motion of the 
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lunar module relative to the main vehicle structure, and thus validates the analytical 
assumption that the lunar module could be treated as a rigidly attached mass. 

The natural frequencies for the vehicle in the cantilever configuration are summa
rized in table III and the mode shapes are plotted in  figures 13 and 14. With the vehicle 
empty, four beam bending modes were obtained, the fourth mode shown in figure 13(d) 
being accompanied by large engine motions. With the S-IC 85 percent full and all upper 
stages 100 percent full ,  a mode shown in figure 1400)in which motion of the fuel-slosh
simulation mass predominates was found along with five beam bending modes. In the 
tests of the cantilever configuration, the branch motions were 'not monitored and thus are 
not shown. To represent the cantilever attachment analytically, the mass located at the 
tiedown position was connected to  the ground by translational and rotational springs to 
represent the tiedown structure. This arrangement is shown schematically in figure 8. 
The magnitudes of these springs were determined empirically by adjusting their magni
tude until agreement between analysis and experiment was obtained for the f i rs t  mode 
with the S-IC stage 85 percent full and all other stages 100 percent full. The magnitudes 
of these spring restraints which were used for both weight conditions investigated for the 
cantilever configuration are given in figure 8. The effect of the holddown representa
tion on the frequencies is shown in table IV where the analytical frequencies with spring 
restraints and with cantilever boundary conditions are tabulated. It can be seen that an 
e r r o r  as large as 32 percent can be introduced by improper representation of the hold-
down. Modal damping for the cantilevered vehicle is given in table III and is found to be 
small. The trend of increased damping with mode number is found for the empty vehicle 
but not for the full vehicle. 

The measured and calculated natural frequencies for the staged configurations are 
summarized in table V and the natural mode shapes are shown in figures 1 5  to 19. It 
should be noted that for the staged configurations which have a lower length-diameter 
ratio, fewer modes with beam-type motion were found in the frequency range of the inves
tigation. It was also found that the mode number in which engine motion predominates 
decreased as stages were removed. Both of these effects are especially noticeable when 
the launch escape system is removed. 

The effect of including shear deformation in the analysis can be seen by comparing 
the frequencies given in table VI. The inclusion of shear  deformation drops the differ
ence between the analysis and experiment in the f i r s t  mode from 8.1 percent to 2.3 per
cent. As expected, the effect becomes more pronounced for the higher modes. 

In general, the agreement between analysis and experiment in both frequency and 
mode shape is considered to be good for the f i r s t  two modes, the agreement being poorer 
in some of the higher modes. 



The variation of the free-free bending frequencies with first-stage fuel level is 
shown in figure 20 for the analytical and experimental results presented in this report  and 
for scaled experimental data from the l / l0-scale replica model of the Apollo-Saturn V. 
Examination of this figure shows that the experimental results of this investigation lie 
between the scaled l/lO-scale model experimental resul ts  and the 1/40-scale analytical 
results with good agreement for all fuel levels. The maximum deviations of the 1/40
scale model experimental data are 8.7 percent, 10.4 percent, and 8.6 percent in the first, 
second, and third modes, respectively, with respect to the scaled l/lO-scale model data. 
This result  indicates that the degree of relaxation from replica scaling used in the design 
of the 1/40-scale dynamic model of the Apollo-Saturn V launch vehicle is acceptable with 
regard to determining the f i r s t  three launch-vehicle bending modes. 

CONCLUDING REMARKS 

Analytically and experimentally determined lateral  vibration characteristics for 
several configurations and weight conditions of the 1/40-scale dynamically similar model 
of the Apollo-Saturn V launch vehicle a r e  presented as a par t  of the launch-vehicle 
dynamic-model program at the Langley Research Center. The results from both analysis 
and experiment show that the elastic modes a r e  adequately characterized by beam bending-
type motion. In the analysis the importance of shear deformation is demonstrated. In 
addition to the beam bending modes, modes in which the fuel-slosh simulator mass and 
engine motion predominate were observed experimentally and predicted analytically. In 
the frequency range investigated, fewer bending modes were observed for the staged con
figurations than for the complete vehicle. 

The importance of proper representation of the tiedown structure for the cantilever 
configuration is demonstrated. A difference of 32 percent between the analytical and 
experimental first-mode frequency is obtained when an ideal cantilever was assumed in 
the analysis. To account for the flexibility of the tiedown structure, an empirical spring 
was introduced into the analysis to replace the ideal cantilever boundary condition. 

A comparison of the results of this investigation with the scaled experimental results 
from the l/lO-scale model of the Apollo-Saturn V is made. This comparison indicates 
that the degree of relaxation from replica scaling used in the design of the 1/40-scale 
dynamic model of the Apollo-Saturn V launch vehicle is acceptable with regard to the 
determination of the f i rs t  three launch-vehicle bending modes. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., July 25, 1968, 
124-08-05-18-23. 
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TABLE I.- SUMMARY OF 1/40-SCALE MODEL CONFIGURATIONS AND WEIGHT 

CONDITIONS TESTED AND ANALYZED 

1
Configuration I - complete vehicle 
Configuration I1 without launch escape system - S-11, 

S-IVB stages with Apollo payload and launch escape system 
Configuration I1 without launch escape system - S-11, 1

~ S-IVB stages with Apollo payload; 
Configuration 111 - S-IVB stage with the Apollo payload- -I 

Free-free Cantilever 
I I I 

1 S-IC empty* s-I1 100%full" S-11 empty* S-IVB empty 

' S-IC 15%full* s-11100%full* S-IVB 100%full S-IC 85% full* 

S-IC 50% full* ' 

S-IC 85%full* 
* 

1 Configuration I1 with Configuration I1 without Configuration I Configuration II I launch escape system launch escape system 

All other tanks 100 percent full. 



TABLE II.- COMPARISON OF ANALYTICAL AND EXPERIMENTAL FREQUENCIES AND 

EXPERIMENTAL DAMPING OBTAINED FOR CONFIGURATION I - FREE-FREE 

Frequencies and damping for 

s-IC 85% full S-IC 50%full S-IC 15%full S-IC empty 
Mode Analytical Experimental Analytical Experimental Analytical Experimental Analytical Experimental 

Frequency, Frequency, Damping, Frequency, Frequency, Damping, Frequency, Frequency, Damping, Frequency, Frequency, Damping, 
HZ HZ g HZ HZ F: HZ HZ !4 nz nz E 

First bending 40.3 39.4 0.0079 42.1 40.6 0.0123 44.9 43.1 0.0107 45.3 43.8 0.0129 

Second bending 77.7 71.7 .0108 84.9 78.6 ,0318 92.4 85.5 .0173 93.1 85.8 .0162 

Third bending 119.6 103.1 ,0116 123.7 111.1 .a247 130.0 123.3 .0234 130.3 126.1 

Fourth bending 147.8 129.0 ,0145 153.6 129.9 ,0152 

Slosh 13.6 13.5 14.1 14.0 17.7 17.2 .0110 

S-IC engine 246.3 242.6 245.6 216.0 .0119 

.0159S - N B  engine 259.8 260.1 260.7 263.9 241.6 

Suspension: 

(a) Rocking ,360 1.008 ,360 ,318 

(c) Rocking and pendulum 288 



TABLE III.- SUMMARY OF FREQUENCY AND DAMPING RESULTS 

FOR CONFIGURATION I CANTILEVERED 

Frequency and damping resul ts  for weight condition of -
No fuel Complete fuel load 

Analytical Experimental Analytical Experimental 
~~ 

Frequency, Frequency , Damping, Frequency, Frequency, Damping
Hz Hz g Hz Hz g 

First bending 19.1 18.75 0.007 10.6 10.9 0.0163 

Second bending 76.3 71.8 .0094 36.3 34.7 .0086 
Third bending 122.6 118.6 .010 68.8 62.2 

Fourth bending 203.6 188.9 .0139 115.0 95.7 .0082 
Fifth bending 141.6 127.0 

Slosh 13.3 

S-IC engine 241.8 242.6 

, S-IVB engine 264.5 260.4 
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TABLE 1V.- COMPARISON O F  FREQUENCIES FOR CONFIGURATION I 

F i r s t  stage full showing the effect of boundary condi t ion4 

HZ HZ 

Fi r s t  14.6 10.6 
Second 39.7 36.3 
Third 72.7 68.8 
Fourth 111.0 115.0 95.1 
Fifth 144.0 141.6 127.0 

Mode Cantilever, Spring restraint ,  Experimental, 

TABLE v.- SUMMARY OF FREQUENCY RESULTS FOR CONFIGURATIONS II AND m FREE-FREE 

~ 

Frequency resul ts  for  -
~ 

Mode 

Configuration II. without 
launch escape iy s t em,

all s tages  full 

Configuration 11' without 
launch escape iystem,

S-II empty 
Configuration IU,

S-IVB full 
Configuration ID, 

S - N B  empty 

inalytical 
requency,
HZ 

Experimental
frequency,

HZ 

Analytical
frequency,

Hz 

:xperimental
frequency,

HZ 

Analytical
frequency,

HZ 

Cxperimental
frequency,

HZ 

Analytical
[requency,

HZ 

Cxperimenta
frequency,

HZ 

~ 

Zxperimental
frequency,

HZ 

Analytical
Irequency,

HZ 
3 r s t  bending 65.8 66.0 73.0 14.0 84.2 82.0 181.2 166.0 182.0203.8 
lecond bending 124.8 123.0 

:-IVB engine 246.6 239.0 238.2 252.3 

TABLE VI.- THE EFFECTS O F  SHEAR DEFORMATION O F  THE 

FREE-FREE FREQUENCIES O F  CONFIGURATION I 

F i r s t  stage 85 percent  full; all other  s tages  100 percent fu lg  

I
I 

I Frequencies for  -
Mode Shear d e g m a t i o n ,  1I No shea r  deformation, 

HZHZ 

First bending 40.3 42.6 39.4 -7 
Second bending 77.7 85.41 Third bending 1 119.6 129.1 

21 




Figure 1.- 1140-scale dynamic model of the Apollo-Saturn V launch vehicle. L-68-8501 
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Figure 2.- Schematic drawing and physical idealization of the 1140-scaie dynamic model of the Saturn V launch vehicle, 
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Figure 3.- Bending stiffness distribution of the V40-scale dynamic model of the Saturn V launch vehicle. 
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Figure 5.- Mass distribution of the 1140-scale dynamic model of the Saturn V launch vehicle. 
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Figure 6.- Idealization of engines. 
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Figure 7.- l/llO-scale dynamic model of the Apollo-Saturn V launch vehicle on its cantilever test stand. L-68-8502 
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Figure 9.- Analytical and experimental free-free mode shapes for configuration I with the S- IC  stage empty and all other stages 
100 percent full. 
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Figure 10.- Analytical and experimental free-free mode shapes for configuration I with the S-IC stage 15 percent fu l l  and all other 
stages 100 percent full. 
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Figure 11.- Analytical and experimental free-free mode shapes for configuration I with the  S-IC stage 50 percent ful l  and all other 
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Figure 12.- Analytical and experimental free-free mode shapes for configuration I with the S-IC stage 85 percent full and all other 
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Figure 14.- Analytical and experimental cantilever mode shapes for configuration I with the S- IC stage 85 percent full and a l l  other 
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Figure 15.- Analytical and experimental free-free mode shapes for configuration I I  with launch escape system. S-11, S-IVB, and 
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